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Dimensionless wavelength
Aspect ratio

Parameter in equation of state for vapor
Heat capacity

Grain diameter

Mass diffusivity
Acceleration of gravity
Grashof number
Enthalpy

Depth of porous layer
Diffusional mass flow
Intrinsic permeability
Thermal conductivity
Latent heat of sublimation
Lewis number

Nusselt number

Pressure

Heat flux

Rayleigh number
Sherwood number

time

Temperature

x direction velocity
Internal energy

Specific volume

Velocity vector

Cell dimensions

2 direction velocity
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Vertical coordinate
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At Time step
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THERMAL CONVECTION IN SNOW

D.J. Powers, S.C. Colbeck and K. O’Neill

INTRODUCTION

The size and shape of grains and the density of snow greatly affect all of its material properties.
Snow covers of similar density ang grain size may have widely different crystal shapes, ranging from
rounded to sharply angular. The range over which the physical properties vary is quite large.

It is widely known that when a low density dry snow is subjected to a temperature gradient of
at least 0.1°C/cm, many of the grains will develop facets. A dramatic loss of strength usually ac-
companies this rapid recrystallization and this strength loss is commonly thought to be a factor in
the release of avalanches. Efforts to model crystal growth in snow have so far focused solely on
vapor diffusion among the crystals. However, the temperature gradients that drive the diffusion
of water vapor also establish air density gradients that may lead to convective flows of air. These
flows, if they occur, would certainly have a large impact on the flux of heat and vapor and there-
fore might affect the metamorphism of snow.

Snow metamorphism

Dry snow metamorphism is often classified as equitemperature or temperature gradient. The
first term refers to conditions under which grains become more rounded and sintering processes
increase the size of bonds between grains. It is now recognized that these processes do not ever
occur under isothermal conditions, as the name would imply. Furthermore, when nature imposes
even a slight gradient on the snow cover the processes are greatly accelerated. Colbeck (1982) re-
fers to the rounded grains as the equilibrium form, which is probably a better description than
equitemperature.

Temperature gradient metamorphism is characterized by the growth of large angular or faceted
crystals. Actually, temperature gradient metamorphism is also a misnomer, since large faceted
crystals occur only when large temperature gradients are applied to low density snow. A loss of
strength frequently accompanies the growth of large faceted grains, especially when hollow depth
hoar crystals form. These grow most readily in low density snows subjected to very large temper-
ature gradients, More solid faceted crystals grow at Jower temperature gradients, or in higher den-
sity snows (Akitaya 1974, Marbouty 1980).

Mass transfer by diffusion in snow

Here we are primarily concerned with metamorphism driven by strong temperature gradients
because the temperature gradients that drive depth hoar growth could also drive the convective
flows that are the subject of the present work.

Metamorphism in dry snow occurs by the transport of water vapor. Vapor diffuses from areas
of high vapor density to low vapor density, or it may be carried by convective currents of air. In
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this section, we discuss only the diffusion process. Vapor pressure gradients exist in snow because
of temperature gradients or curvature differences, or both. Vapor pressure is higher over warmer
ice and over convexly curved ice. When temperature gradients are low, curvature effects are im-
portant, and concave sections will begin to fill in by vapor deposition. However, at the large val-
ues of temperature gradient where depth hoar grows, curvature effects are negligible, and the
I transport of vapor is governed by the temperature field. Strong gradients occur for prolonged
periods most commonly in cold climates with shallow snow covers (less than 100 cm).
If we think of a vertical coordinate as positive upwards, the gradient will be negative. Hence-
forth, a large gradient refers to a large absolute value of the negative gradient.
Early attempts to model depth hoar growth (i.e., Giddings and LaChapelle 1962) used a one-
dimensional diffusion equation to describe the flux of vapor through dry snow:

2 — R

ap,
f_,z-DE;‘— (1)

where D is a diffusion coefficient. Giddings and LaChapelle tried to calculate crystal growth rates

I assuming that all vapor stopped at one level. This assumption is generally meaningless, although
2 eq 1 can be used to represent mass fluxes in one dimension. Experimental data from Yosida (1955)
and Yen (1963) show a rate of vapor transport four or five times greater than the Giddings and La-
Chapelle model predicts. Yosida formulated his results in an equation similar to eq 1, using an ef-
fective diffusivity coefficient to describe the flux of vapor. He found D, equal to 0.85 cm?/s
and invariant with snow density over the range of 0.08 < p; < 0.51 g/em®. Yen confirmed these
results, although he tested only densities in the range of 0.38 < p, < 0.48 g/cm®. Trabant and
Benson (1972) calculated flux rates in the field and found them to be about an order of magni-
tude greater than they calculated using eq 1. Although they did not calculate an effective diffu-
) sivity, their results indicate an effective diffusivity about a factor of 2 greater than that of Yosida.
- The reason for the high observed flux rates is not entirely clear. Trabant and Benson suggest
I that thermal convection may be important, and this may certainly be part of the answer. In Yo-
sida’s experiments the geometry would make convection unlikely. The common observation of
rapidly growing depth hoar in shallow layers of snow where convection is unlikely also points to
.. the need for some other explanation for the high flux rates.
Yosida supposed that vapor transport occurred by a “hand-to-hand” mechanism, i.e., that mass
. was transferred by diffusion from grain to grain and not along vertical air channels. Since ice is a

i much better conductor than air, temperature gradients in the air spaces may be much higher than
the average gradient in the snow, and thus local fluxes may be much higher than that predicted on
) the basis of an average temperature gradient. This is part of the explanation for the high values of
B D, . Colbeck (1983) quantified this effect in an effort to model grain growth. His model did show
reasonable growth rates, although he was forced to arbitrary assumptions about snow stereology be-
— cause of a lack of good data. His model has not been applied to calculate macroscopic mass flux
. rates, and thus it is not yet certain just what the quantitative effects of hand-to-hand transfer are
- on those mass fluxes.

Colbeck’s model showed that grain growth is primarily attributable to a coupling between verti-
cally aligned particles, just as Yosida suggested. The rate of mass movement between the particles
is equal to the rate of mass gain by the growing particle. Thus grains do not grow because of a
macroscopic redistribution of mass between regions of the snow cover as described in some flux
divergence models. The particle-to-particle mechanism explains the experimental observation of
rapid grain growth without significant snow density change (Marbouty 1980). The relatively in-
tense vapor transport between coupled grains is included in the overall macroscopic vapor flux de-
scribed by eq 1, with an effective diffusion coefficient. We study the macroscopic fluxes and their
possible enhancement by convection in order to see how the convective fluxes affect the grain-scale
vapor transport that controls snow metamorphism.
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Heat transfer
Typically, heat transfer through snow is modeled by a conduction equation of the form

oT
q = -k dz (2)

where k is a thermal conductivity. It is customary to use an effective thermal conductivity to ac-
count for the heat conduction through both the fluid and solid in porous media. In snow we must
also consider the latent heat carried by the flux of vapor. The transport of heat ascribable to vapor
diffusion is given by

dp, oT
s =L Dogy 57 ®

where L is the latent heat of sublimation.

Since this flux is alsc proportional to the temperature gradient, all contributions to heat flow
may be lumped into an effective thermal conductivity, as described by eq 2, Data on these effec-
tive thermal conductivities, summarized by Mellor (1977), show a great deal of scatter for any
given density. In part this may be attributable to the temperature dependence of the vapor term.
The experimental data of Pitman and Zuckerman (1967) show the expected trends with tempera-
ture; however, the magnitude of the change in k., with temperature that they observed is too
great to be explained by the temperature dependence of the vapor diffusion term.

A basic understanding of the relative contributions of conduction through ice, of conduction
through air and of vapor diffusion to the total transport of heat is lacking. Generally, it is assumed
that conduction through the air is negligible, since the thermal conductivity of air is 100 times less
than that of ice. However, the aforementioned notion of exaggerated gradients in the voids be-
tween particles, coupled with the high porosity of snow, leads us to estimate that the conduction
of heat through the air spaces may be on the order of 10% of that through the ice lattice.

The contribution of vapor transport can be estimated from eq 3, defining k,, as the vapor diffu-
sion equivalent of thermal conductivity, or

apy
kv =LD€ffﬁ' (4)

where &, is a function of temperature, as illus-

trated in Figure 1. At 0°C, using Yosida’s De{f 3210 °—
of 0.85 cm?/s, we find k,, = 2.4x 10™ cal/cm
s °C. Since total thermal conductivities of less 5 010 cm¥s
than this are observed, we must be somewhat w2
skeptical of either Yosida’s notion that D, is ~ §
not a function of density, or of the thermal S
conductivity data (or of both). It is reasonable .
that D, is a function of density, since crystal
growth rates are strongly dependent on snow
density. .

In summary, for lower density snows, con- T o
duction through air is probably not negligible, Figure 1. Contributions of vapor diffusion
while the transfer of latent heat is probably very o heat transport in terms of thermal con-
important. In higher density snows, where the ductivity k, for various values of effective
tota] thermal conductivity is greater, the po- diffusivity D.
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rosity is less and temperature differences among neighboring grains are less, conduction through
the ice lattice may dominate the heat transfer process.

BACKGROUND-POROUS MEDIA

This section examines the developments that have taken place in the study of thermal convec-
tion in porous media. The impetus for much of this work has been an interest in petroleum and
geothermal reservoirs. However, much of the work is of a basic nature, and may be applied to
snow. The aim here is to outline the fundamental principles that govern thermal convective flows
in porous media and to summarize the pertinent results.

Structure of thermal convection

Convective flows occur when buoyancy forces, driven by density gradients, are sufficient to
overcome viscous drag. As warm air rises, cold air from above must descend for continuity. Ther-
mal convection can thus be thought of as nature’s way of trying to relieve unstable density gradi-
ents.

Circulation patterns in a horizontal layer heated from below appear commonly in two forms.
One form, commonly called two-dimensional convection, consists of rolls (see Fig. 2) that are
very long in one direction, and are roughly equal in the other two dimensions. The other form is
three-dimensional convection, in which the cell takes a hexagonal pattern when viewed from
above. The cell size at the onset of convection was calculated for both forms by Combarnous and
Bories (1975) (Fig. 2).

When the porous layer is confined laterally, the dimensions of the convective cells are governed
by the dimensions of the container. Beck (1972), and Tewari and Torrance (1981) have predict-
ed the preferred cell size at the onset of convection as a function of container dimensions for the
closed-top and open-top cases respectively. Cheng (1978), in his review paper, draws two general
conclusions about the results of Beck, and these seem to apply equally well to the results of Tew-
ari. First, when one of the lateral dimensions is less than the vertical dimension, two dimensional
convection is the rule. Secondly, the number and direction of rolls is governed by the tendency
for the width of the roll to be nearly equal to its height. We can also say that when the upper
boundary is permeable the lateral dimensions of the convective cell are about one and one-half
times greater than for the closed top case, all other things being equal.
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Figure 2. Longitudinal roll and hexagonal cell (after Combarnous and Bories 1975 ).




The above results strictly apply only at the onset of convection. When convection is *mild,”
these results are probably a good approximation. However, as convection intensifies, the pre-
ferred cell size can be greatly reduced. Numerical experiments by Straus and Schubert (1979)
show that for random initial conditions, either two- or three-dimensional convection can occur.
The mode that would maximize heat transfer is not necessarily the one that results.

Rayleigh number

The flow of fluids through a porous medium is described by Darcy’s law, which is an empiri-
cal relation developed by Darcy from his classic set of experiments. Two assumptions are made
here: that the fluid is Boussinesq, meaning that variations in fluid properties are negligible except
where buoyancy terms are involved, and that it is incompressible, which implies that density will
not vary directly as a result of the flow.

From a nondimensional form of Darcy’s law (derived more completely in the Modeling section)
comes an important nondimensional parameter known as the Rayleigh number, defined as

0 8BATHK
=

(5)

Ra

where k is k,,/(pCp)s and p,, is the fluid density at a reference temperature. The Rayleigh num-
ber, along with the boundary conditions, governs both the onset of convection and its intensity.

The definition of the temperature difference in the Rayleigh number depends on the thermal
boundary conditions at the upper and lower surfaces. When the boundary conditions are con-
stant temperatures at both upper and lower surfaces, then the AT is just the difference between
those temperatures. However, we are also interested in lower boundaries with a constant heat
flux (). When this is the case, we define the temperature difference as gH/k,, which is the tem-
perature difference that would be observed if convection were absent.

m>

Onset problem

Convection takes place when buoyancy forces are sufficient to overcome viscous resistance.
For a porous medium, this happens when the Rayleigh number is sufficiently large. The critical
value of the Rayleigh number at which convection begins is a function primarily of the boundary
conditions. The critical Rayleigh number was originally calculated for a horizontal layer with 1so-
thermal, impermeable boundaries by Lapwood (1948). Nield (1968) has applied the analyvsis of
Lapwood to other boundary conditions, including permeable or constant heat flux boundaries.
Some of his results, pertinent to the present problem, are listed in Table 1, along with the results
of the original problem considered by Lapwood.

Table 1. Summary for the onset of convection. After
Nield (1968).

Case Top boundary Bottom boundary Rapy aep

1 Constant temperature, Constant temperature, 39.5 3.14

tmpermeable impermeable

2 Constant temperature, Constant temperature, 27.1 2.33
permeable impermeable

3 Constant temperature, Constant flux, 271 2.33
impermeable impermeable

4 Constant temperature, Constant flux, 17.7 1,75
permeahle impermeabhle
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uses eq 33 for the energy equation, and thus accounts for latent heat, while the other uses eq 31,
and does not account for latent heat effects. The codes are designated as CONVAP and CONVEC
respectively. The programs differ only in the energy equation used, and thus Figure 9 applies to
both codes.

The initial temperature profile varied linearly in z and was constant in the x direction. The
stream function was set equal to zero over the entire grid, corresponding to a no-flow situation,
A temperature perturbation was introduced prior to the first stream function calculation to start
the flows. The location and magnitude of this perturbation affects the transient response but not
the tinal steady state.

Typically, most of the computing time was used to obtain the iterative solution of the equa-
tion of motion. This equation was therefore overrelaxed (Pinder and Gray 1977) to speed con-
vergence. In essence, what the overrelaxation does is to weight the value of \l/;‘j‘ to make the
equation more or less implicit. It was found that an optimum value of the relaxation coefficient
was 1.7, where 2.0 is fully implicit and 0.0 is fully explicit. The convergence of the solution at
a time step was adequate when for all 7 and §

tnew vold

IV,"/' - Vi | B 10_‘4
N ;
|uma.\‘| t 'Vminl +0.01

where v, and ,, ;. are the maximum and minimum values of the stream function calculated
during iteration,

Several criteria were used to determine if the solution was at a steady state. The most reliable
was to monitor energy conservation. At steady state, all heat flowing in must flow out. Since
the lateral boundaries are adiabatic, this implies that the heat flux at the bottom be equivalent to
the heat flux at the top. In nondimensional form, the heat flux is the Nusselt number. The con-
servation of energy was monitored by observing the ratio [(Nu,, , - Nu,,.)/Nu, | The equa-
tions used for calculating the Nusselt numbers at the boundaries are derived in Appendix A.

For each run, the energy balance ratio would reach a minimum value because of accuracy lim-
itations of the solution. Better conservation (a lower minimum balance) could be achieved by re-
fining the grid. Choice of the time step did not affect the final steady state or the energy conser-
vation achieved. Thus the final steady state was independent of the path followed to obtain it.

Choice of the proper time step was important in the speed with which the solution converged.
Too small a time step resulted in smooth but very slow convergence. Too large a time step would
produce an oscillating solution that would overshoot the steady state, thus also requiring a long
solution time. If the time step was much too large, the solution would not converge to a steady
state. From experience we found that the optimum time step size was usually between 0.01 and
0.05. Grid spacing size did not seem to affect the choice of At, but the value of the Rayleigh
number did. It was found to be necessary to use a smaller time step as the Rayleigh number in-
creased.

min

Verification of the model
To test the model, runs were made that could be compared directly to results in the literature.

Most of the results in the literature are for the basic case of convection in a horizontal layer bound-

ed by isothermal, impermeable surfaces. Figure 3 shows some of the results for this case. Experi-
mental results (compiled by Combarnous and Bories) are shown, along with analvtical results of
Palm et al. (1972) and Combarnous and Bories (1975). The simple relation deduced by Elder
(1967),

Nu = Ra/Ra,, (43)
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Rearranging and combining, we find the final form to be
Q1 _ e o
(T -T) (T To +Tl’l.+l—2T,'/+T1,i_l s
T A, T < 2 2 B
Ar 1./ hx hZ -
(42) - ‘{
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h, h, .
-]
While the correct form of the conduction terms could be found from a shadow node technique .
similar to the one employed earlier, the correct form of the convection term is much more diffi- ‘ j
cult to derive. .9
Numerical solution - ‘
An Alternating Direction Implicit (ADI) scheme is used to evaluate the algebraic cquations -
(Pinder and Gray 1977). The method sweeps the :
grid line by line, first in the x direction, then in the —
- S - e
z direction. The scheme is implicit in that the equa- moag W L
H ; . ead constants R
tions written about each node are solved simultane- . ; s
ously for each successive line. Thus each algebraic 1 I
equation contains more than one unknown. When Initiahize arrays } )
solving the equations for a line swept in the x direc- S
tion, the derivatives in x are evaluated at the time o Calcutate
step level ¢+1 and derivatives in z are evaluated at source term
the time step level €. The alternatives to a line- l
i . . s ADI-SOR calculations
implicit scheme are to solve the equations explicitly, of stream fynction
where new values are calculated on a node by node
basis, or to solve the equations directly, in which No_| agequate convergence?
case the values for the entire grid are calculated si- ‘ iy
. | es
multaneously. The ADI method is more stable than ’
o ) ) ADI calculations
the explicit method, thus allowing much larger time ‘ of temperature field

steps to be used. The advantage over direct methods
is that the matrix of coefficients is not zero only on

' Output it so desired
; ut if so desired
three main diagonals, and thus the system of equa- J _No_ ..L Steady state?
r
|

L J IS

tions may be solved simply and efficiently without

|
|
i
-
<
@
w
, !
oo !
a a4

evafuating all of the zeros. An explicit form of this

Ny
prograra was originally developed, and was found to L,,_:T: 77777 B .
be much slower and more costly. ]
The computing flow chart is given in Figure 9. Figure 9. Flow diagram for computer =3
Two FORTRAN programs were developed: One codes CONVAP and CONVFEC.
18
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ary. Beier et al. (1983) account for variations along the boundary and find that the second order e q
terms are of O(h*) and O(h*) for the convective and conductive terms respectively. Thus each is B _‘
less than the first order truncation error term by O(k*) and can be neglected for reasonably fine ::.'{' »

grids.
The complete energy equation is then T

i~/

Ar K2 K2

TG -TY (T =273+ Ti-l)i+(T,'+1 -2+ 1),

(40)

7).y, - (uT),-_.ﬁ\ (WT),'...l/, - (WT)-_xA
h h, }i - h, /i -

The termis on the right-hand side may be evaluated at either the £ or 2+1 time step level, depend-
ing on the solution scheme used. This same form can be obtained by applying central differences
to the conduction terms, first order upwind differences to the convection term, and a first order
forward difference to the transient term.

When the effects of phase change are considered (eq 32), the finite differences used follow the
same basic concepts. Convection of vapor is treated in a similar way to the convection of air,
Diffusion of vapor is treated in a manner similar to that of conduction of heat. The discrete form
of ¢q 31 (again with a false transient) is

(Tf; ' - Tt%}) = N21+%(Ti+l B Ti) N mi—%(Ti - Ti-l)
At 2

+N2j+%(7;'+1 - T/) 'N2'-y,(T,‘ - Tj-l)
h

1)
Upgy (T + N1y, - Uy, (T+ N1y,
) h

x

W’+%(T+N1)I+% -w,'_%(T"'Nl)I-_%
i} h : l

z

(T + N1),y,, etc., ar